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Apoptolidin A (1) (Figure 1) is a potent, selective mediator of
apoptosis in E1A transformed rat glia cells.1 Khosla has shown
that apoptolidin induces cell death by inhibiting the mitochondrial
F0F1-ATPase.1 As a result of its remarkably selective effects on
cancer cells, apoptolidin A shows great potential for the treatment
of cancer.1 The interesting chemical structure, combined with its
appealing biological properties, has made apoptolidin A an attractive
target for synthesis. Since the isolation1 and structure elucidation2

of apoptolidin A, two total syntheses,3 two syntheses of apoptoli-
dinone,4 several partial syntheses,5 as well as a number of synthetic
modifications6 have been reported. Wender recently identified two
additional metabolites, apoptolidins B and C, which exhibit slightly
improved antitumor activity.7

This report describes a synthesis of apoptolidinone (2), the
aglycone of apoptolidin A. Apoptolidinone contains the carbon
backbone of apoptolidin A, but lacks the 6-deoxy-4-O-methyl-L-
glucose andD-oleandrose/L-olivomycose sugars appended to the
C9 and C27 oxygens, respectively. Apoptolidinone was targeted
for synthesis as a check-point en route to a total synthesis of
apoptolidin A. The approach involves the construction and coupling
of components3, 4, and 5 (Scheme 1), wherein a regio- and
stereoselective cross-metathesis reaction was chosen for the key
C10-C11 bond-forming reaction to assemble the C1-C10 and
C11-C28 subunits. Three thiazolidinethione propionate aldol
reactions and two glycolate alkylation reactions formed the basis
for controlling the configuration of 8 of 12 stereogenic centers in
apoptolidinone.

The synthesis of ketophosphonate5 provided an opportunity to
demonstrate the utility and versatility of thiazolidinethione chiral
auxiliaries8 (Scheme 2). Alkylation ofO-benzylglycolyloxazolidi-
none69 followed by reductive removal of the auxiliary, methylation
of the intermediate primary hydroxyl, and finally oxidative cleavage
of the terminal alkene delivered aldehyde7. The enolate of
thiazolidinethione8 was formed by treatment with 1 equiv each of
TiCl4, (-)-sparteine, andN-methylpyrrolidinone.8 Addition of
aldehyde7 to the enolate solution produced aldol product9 with
excellent selectivity (>98:2) for the Evans syn isomer. Aldol adduct
9 was transformed into aldehyde10 by protection of the alcohol
as its triethylsilyl ether and subsequent reduction of theN-acyl
thioimide with i-Bu2AlH. A second aldol reaction was then
performed with aldehyde10. In this case, the enolate was prepared
from thioimide8 using 1 equiv of TiCl4 and excessi-Pr2NEt.8 Use
of these conditions led to the non-Evans syn isomer11 with
excellent selectivity. While a very similar derivative to11 has
previously been prepared by Sulikowski,5h the use of the glycolate
alkylation and thiazolidinethione aldol technologies led to a more
efficient preparation of11. Aldol 11 was converted to the C20-
C28 phosphonate5 by first protecting the hydroxyl group as the
trimethylsilyl ether followed by direct displacement of the auxiliary
with lithiodimethyl methylphosphonate.10

The previous sequence demonstrates the capability to selectively
access either syn aldol product, from the sameN-propionylthiazo-
lidinethione, simply by altering reaction conditions (equivalent to
conducting the same reaction using different enantiomers of chiral
auxiliary), to convert theN-acylthioimide to the aldehyde in one
rather than two synthetic steps, and to directly displace the auxiliary
with a carbon nucleophile to form aâ-ketophosphonate.11

Preparation of aldehyde4 began by alkylation of glycolyl imide
12 with prenyl iodide12 (Scheme 3). The auxiliary was reductively
removed using LiBH4, whereupon Swern oxidation13 of the resultant
alcohol provided aldehyde13 in excellent yield. Titanium tetra-
chloride mediated allylation of aldehyde13with allyltrimethylsilane
provided the alcohol14 resulting from chelation-controlled14

nucleophile addition (>98:2 dr). The alcohol was protected to give
the TBS ether15. Selective hydroboration of the less substituted
alkene using catecholborane and Wilkinson’s catalyst15 afforded,
after oxidative workup, a C13 primary alcohol. Conversion of the
alcohol to the corresponding acetate and subsequent ozonolysis of
the trisubstituted alkene afforded the requisite C13-C19 aldehyde
4 in good overall yield.

Figure 1. Structure of apoptolidin A.

Scheme 1. Retrosynthetic Analysis of Apoptolidinone
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Coupling of aldehyde4 and ketophosphonate5, in a Horner-
Wadsworth-Emmons reaction, was effected using Ba(OH)2 under
the mild conditions described by Sinisterra16 and Paterson17 (Scheme
4). Treatment of enone16 with mildly acidic methanol at 0°C
effected cleavage of the silyl ethers, which led to cyclization
forming mixed methyl ketal17 in high yield.18 Importantly, when
the C23 hydroxyl protecting group was triethylsilyl ortert-
butyldimethylsilyl, the rate of formation of ketal17 was substan-
tially slower, leading to significant decomposition, prior to ketal
formation. The C23 hydroxyl of ketal17was protected as the TBS
ether, and the alkene at C19-C20 was dihydroxylated with OsO4
to produce a mixture of diastereomers, favoring the desired diol.19

Importantly, pyridine-acetone-H2O was required as the solvent
for the reaction to proceed at a reasonable rate.20 The pure major
isomer, readily obtained by flash chromatography, was protected
as its cyclic carbonate18by treatment with triphosgene.21 The C27
benzyl ether was selectively removed by hydrogenolysis to provide
the C27 alcohol19. Revealing the C27 hydroxyl at this stage opens
the opportunity for the selective attachment of the C27D-olean-
drose-L-olivomycose disaccharide unit required for the synthesis
of apoptolidin A. In contrast, for the synthesis of apoptolidinone,
the C27 hydroxyl group was protected as the TBS ether20.

The C1-C10 trieneoate3, needed for the metathesis reaction,
was readily synthesized beginning with known aldol21 (Scheme

5).8a Protection of the alcohol21 followed by reduction withi-Bu2-
AlH delivered aldehyde22. Wittig reaction with phosphorane2322

provided unsaturated ester24with good selectivity for theE isomer.
Two iterations of ai-Bu2AlH reduction, MnO2 oxidation, and Wittig
olefination sequence, followed by removal of the silyl group
converted diene24 to tetraene3, in high overall yield.

Elaboration of the C13-C28 acetate20, to form the C11-C28
diene coupling partner26 for the key olefin metathesis reaction,
commenced with cleavage of the acetate group with basic methanol
followed by Swern oxidation13 (Scheme 6). Wittig reaction of the
aldehyde with phosphorane2523 produced an unsaturated aldehyde,
with highE selectivity, which afforded diene26upon reaction with
methylenetriphenylphosphorane.

The trisubstituted, conjugated olefins of tetraene3 and the
trisubstituted olefin of diene26 were expected to be unreactive
under cross-metathesis conditions.24 A cross-metathesis reaction
between the terminal vinyl groups of these compounds was
anticipated to be facile and selective for the desired C10-C13 diene
27, based on the expected difference in reactivities24 of the two
alkenes. In the event, exposure of the alkenes325 and 26 to the
Grubbs heterocyclic carbene catalyst [Cl2(Cy3P)(IMes)RudCHPh]26

Scheme 2. Synthesis of the C20-C28 Fragment 5a

a Conditions: (a) NaN(SiMe3)2, PhMe, THF, H2CdCHCH2I, -78 to-45
°C, 75%; (b) NaBH4, THF, H2O, 1 h, 85%; (c) NaH, MeI, THF, 0°C to 25
°C, 88%; (d) OsO4, NMO, THF, H2O, 15 h; (e) NaIO4, H2O, THF, 60%
(two steps); (f)8, TiCl4, (-)-sparteine, NMP, CH2Cl2, then7, -30 °C, 14
h, 90%; (g) Et3SiOTf, 2,6-lutidine, CH2Cl2, 97%; (h) i-Bu2AlH, heptane,
CH2Cl2, 86%; (i)8, TiCl4, i-Pr2NEt, CH2Cl2, then10, -13 °C, 13 h, 62%;
(j) Me3SiCl, Et3N, DMAP, CH2Cl2, 0 °C, 2 h, 79%; (k) (MeO)2P(O)Me,
n-BuLi, THF, -78 °C, 2 h, 96%.

Scheme 3. Preparation of the C13-C19 Fragment 4a

a Conditions: (a) LiN(i-Pr)2, THF, -78 °C, then Me2CdCHCH2I, THF,
-78 °C, 2 h, 70%; (b) LiBH4, MeOH, Et2O, 0 °C, 80%; (c) (COCl)2,
Me2SO, CH2Cl2, then Et3N, -78 °C to 25 °C, 99%; (d) TiCl4,
H2CdCHCH2SiMe3, CH2Cl2, -78 °C, 30 min, 79%; (e)t-BuSiMe2OTf,
2,6-lutidine, CH2Cl2, -78 °C, 97%; (f) catecholborane, ClRh(PPh3)3, THF,
then H2O2, NaOH; (g) Ac2O, Et3N, DMAP, CH2Cl2, 77% (two steps); (h)
O3, CH2Cl2, -78 °C, then Me2S, 80%.

Scheme 4. Completion of the C13-C28 Fragment 20a

a Conditions: (a) Ba(OH)2, THF, H2O, 88%; (b) PPTS, MeOH, 0°C,
94%; (c)t-BuSiMe2OTf, lutidine, CH2Cl2, -78 °C, 95%; (d) OsO4, NMO,
pyr., acetone, H2O, 3 days, 57%+ 14% isomer; (e) (Cl3CO)2CO, pyr.,
CH2Cl2, -78 °C, 40 min, 98%; (f) H2, Pd/C, EtOAc, 100%; (g)
t-BuSiMe2OTf, lutidine, CH2Cl2, -78 °C, 96%.

Scheme 5. Synthesis of Trieneoate 3a

a Conditions: (a)t-BuSiMe2OTf, 2,6-lutidine, CH2Cl2, -78 °C, 84%;
(b) i-Bu2AlH, heptane, CH2Cl2, -78 °C, 75%; (c)23, PhH, reflux, 12 h,
95%; (d)i-Bu2AlH, heptane, CH2Cl2, -78 °C, 83%; (e) MnO2, PhH, reflux,
20 min, (f)23, PhH, reflux, 12 h; (g)i-Bu2AlH, heptane, CH2Cl2, -78 °C;
(h) MnO2, PhH, reflux, 20 min, (i)23, PhH, reflux, 12 h, 85% (five steps);
(j) H2SiF6, CH3CN, H2O, 5 h, 96%.
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provided the desiredE isomer27 in good yield (>95:5E:Z by 1H
NMR analysis). While 2 equiv of the tetraene3 was utilized in the
cross-metathesis, the homodimer of tetraene3 could be recovered
and recycled. To complete the synthesis of apoptolidinone, the
alcohol27 was protected as its TBS ether28.27 Treatment of the
ester 28 with LiOH at room temperature rapidly cleaved the
carbonate group and eventually the ester to give a good yield of
the desired seco acid. Regioselective macrolactonization proceeded
smoothly under Yamaguchi’s conditions to deliver lactone29.28

Cleavage of the silyl ethers and hydrolysis of the mixed methyl
acetal were effected in one operation using H2SiF6

3a,29 to furnish
apoptolidinone (2),30 the analytical data for which were consistent
with those reported previously.4a,b

An efficient, enantioselective synthesis of apoptolidinone has
been completed, demonstrating the versatility of thiazolidinethione
auxiliaries. This successful approach will be directly applicable to
the synthesis of apoptolidin A; progress toward this goal is
underway.
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Scheme 6. Apoptolidinone Endgame Strategya

a Conditions: (a) K2CO3, MeOH, 10-15 °C, 5 h, 93%; (b) (COCl)2,
Me2SO, CH2Cl2, then Et3N, -78 °C to 25°C, 94%; (c) Ph3PdC(Me)CHO
(25), PhCl, 90°C, 78%; (d) CH3PPh3Br, KOt-Bu, THF, 25°C, 98%; (e)3,
10% Cl2(PCy3)(Imes)RudCHPh, CH2Cl2, 25 °C, 3 h, 63%+ 31%26; (f)
t-BuSiMe2Cl, imidazole, DMF, 25°C, 12 h, 75%; (g) LiOH-H2O, THF,
MeOH, H2O (6:2:1), 25°C, 2.5 days, 77%; (h) 2,4,6-Cl3C6H2C(O)Cl, Et3N,
THF, 25°C, 4 h, then PhMe, DMAP, 25°C, 20 h, 68%; (i) H2SiF6, CH3CN,
H2O, -18 °C, 2 days, then 0°C, 2 days, 61%.
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